Основы программирования



              

Бинарный поиск


Пусть можно сравнивать элементы множества друг с другом, определяя, какой из них больше. (Например, для текстовых строк применяется лексикографическое сравнение: первые буквы сравниваются по алфавиту; если они равны, то сравниваются вторые буквы и т.д.) Тогда можно существенно убыстрить поиск, применяя алгоритм бинарного поиска. Для этого элементы множества хранятся в массиве в возрастающем порядке. Идея бинарного поиска иллюстрируется следующей шуточной задачей: : "Как поймать льва в пустыне? Надо разделить пустыню забором пополам, затем ту половину, в которой находится лев, снова разделить пополам и так далее, пока лев не окажется пойманным".

В алгоритме бинарного поиска мы на каждом шагу делим отрезок массива, в котором может находиться искомый элемент x, пополам. Рассматриваем элемент y в середине отрезка. Если x меньше y, то выбираем левую половину отрезка, если больше, то правую. Таким образом, на каждом шаге размер отрезка массива, в котором может находиться элемент x, уменьшается в два раза. Поиск заканчивается, когда размер отрезка массива (т.е. расстояние между его правым и левым концами) становится равным единице, т.е. через [log2n]+1 шагов, где n — размер массива. В нашем примере это произойдет после 20 шагов (т.к. log21000000 < 20). Таким образом, вместо миллиона операций сравнения при последовательном поиска нужно выполнить всего лишь 20 операций при бинарном.

Запишем алгоритм бинарного поиска на псевдокоде. Дан упорядоченный массив a вещественных чисел (вещественные числа используются для определенности; бинарный поиск можно применять, если на элементах множества определен линейный порядок, т.е. для любых двух элементов можно проверить их равенство или определить, какой их них больше). Пусть текущее число элементов равно n. Элементы массива упорядочены по возрастанию:

a[0] < a[1] < · ·· < a[n - 1]

Мы ищем элемент x. Требуется определить, содержится ли x в массиве. Если элемент x содержится в массиве, то надо определить индекс i ячейки массива, содержащей x:




Содержание  Назад  Вперед