ибо если среди уравнений подсистемы
Могут, ибо если среди уравнений подсистемы есть уравнения вида xj = 0, введенные в состав граней на основе условий неотрицательности решений, и не вошли все уравнения граней, обусловленные ограничениями задачи, то полученное решение может противоречить некоторым "законным" ограничениям задачи. А именно — не представленным в составе решенной подсистемы.
Поэтому в таком случае необходимо дополнительно проверить, принадлежит ли действительно точка (x1, ... , xn) многограннику R, т.е. выполняются ли для нее все не отображенные в подсистеме ограничения вида qj

Данная вычислительная процедура хорошо реализуется на многопроцессорных ВС. Различные варианты подсистем линейных уравнений следует динамически распределять между процессорами. А это, в свою очередь, полностью соответствует SPMD-технологии "одна программа — много потоков данных".
О единственности решения. Мы видели по рисункам, что z = zmax может выполняться на ребрах и гранях многогранника R. Если на ребре, то в двух сопряженных вершинах z принимает одинаковое значение zmax. Если на гранях, то более чем в двух вершинах z = zmax . Это легко переносится в n-мерное пространство.
Итак, указанная вычислительная процедура может привести к получению единственной вершины X = (x1, ... , xn) многогранника R, в которой z(X) = zmax.
Пусть в r вершинах X1, ... , Xr многогранника R выполняются равенства z(Xj) = zmax, j = 1, ... ,r. Построим выпуклую комбинацию векторов:
X = k1 X1 + k2 X2 + ... + kr Xr , k1 + k2 + ... + kr = 1, kj

Множество значений X, удовлетворяющих этому условию, определяет бесконечное множество решений данной задачи ЛП.
Легко видеть, что данная вычислительная процедура предполагает любое соотношение n

Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий