соответствующих не назначенным ранее задачам.
Полагаем ? := ? + 1.

Производим поочередное назначение задач, составляющих упорядоченное множество R, на процессоры, составляющие множество B. Назначенные задачи исключаем из R, а процессоры, на которые произведено назначение, — из B. Номер каждой назначенной задачи заносим в позицию A, соответствующую данному процессору. Время занятости этого процессора увеличиваем на время выполнения назначенной задачи. Последовательное назначение прекращается в одном из трех случаев: a) R


, B =






Примечание. Шаги 7 и 8 реализуют решающее правило, лежащее в основе данного (и каждого!) эвристического (практичного, эффективного, но не основанного на точном решении сложной задачи) алгоритма распараллеливания. Повторим его:
Из тех задач, выполнение которых может быть начато на данном шаге распределения, в первую очередь назначать ту, которая обладает максимальным временем выполнения.
Возможны и другие решающие правила, например, основанные на допустимом резерве времени до обязательного момента окончания решения и др. Применяемое здесь решающее правило обеспечивает высокое быстродействие диспетчера и достаточно редкое (менее 10 %) отклонение результатов распределения от тех же результатов, получаемых методом точного решения задачи распараллеливания.




В множество строк, соответствующих множеству B процессоров с временем занятости T?, записывается задание — простой

